

Chapel for Python Programmers

Subtitle: How I Learned to Stop Worrying and Love the Curlybracket.

So, what is Chapel and why should you care? We all know that Python is the best thing since sliced bread. Python comes with batteries included and there is nothing that can’t be expressed with Python in a short, concise, elegant, and easily readable manner. But, if you find yourself using any of these packages - Bohrium [http://www.bh107.org/], Cython [http://www.cython.org], distarray [https://github.com/enthought/distarray], mpi4py [http://mpi4py.scipy.org/], threading [https://docs.python.org/2/library/threading.html], multiprocessing [https://docs.python.org/2/library/multiprocessing.html], NumPy [http://www.numpy.org/], Numba [http://numba.pydata.org/], and/or NumExpr [https://github.com/pydata/numexpr/] - you might have done so because you felt that Python’s batteries needed a recharge.

You might also have started venturing deeper into the world of curlybrackets. Implementing low-level methods in C/C++ and binding them to Python. In the process you might have felt that you gained performance but lost your productivity. However, there is an alternative, it does have curlybrackets, but you won’t get cut on the corners.

The alternative is Chapel [http://chapel.cray.com/], and it comes with a set of turbo-charged batteries for expressing parallelism, communication, and thereby providing performance! If such matters are important to you, and you enjoy a nice clean syntax, then you might start caring about Chapel.

	Getting Started
	Compiling

	Language Basics
	Variables and Types

	Comments

	Console input / output

	Conditionals and Blocks

	Ranges

	Loops

	Functions and Types

	Lists, Arrays, Tuples, and Dicts

	Classes and Objects

	Organizing Code

	Parallelism
	Task Parallelism

	Data Parallelism

	NumPy

	Batteries
	argparse

	multiprocessing

	threading

	time

	Keywords

	Pythonic Module

	Python and Chapel
	Chapel for Python/NumPy Users

	npbackend / Hidden Chapel

	pyChapel

	Miscellaneous Notes
	Development

	Introspection

Indices and tables

	Index

	Module Index

	Search Page

Appendix

	If Chapel had a band

Links

Getting Started

As a Python user, you are accustomed to running and having Python readily available on almost every machine you use. Chapel is equivalently portable (and more so). However, since Chapel is an emerging technology, it is not quite part of the standard software stack that comes bundled with your operating system. You therefore need to go ahead and download and install Chapel on your system.

If you are using a popular Linux-based operating system you will most likely be successful by running these commands:

Download and unpack
cd /tmp
curl -L -O http://sourceforge.net/projects/chapel/files/chapel/1.9.0/chapel-1.9.0.tar.gz
tar xzf chapel-1.9.0.tar.gz
mv /tmp/chapel-1.9.0 ~/chapel

Build Chapel
cd ~/chapel
make

Setup your environment, add this command to ~/.bashrc for permanent installation.
source ~/chapel/util/setchplenv.bash

After doing the above you should be able to:

Compile an example program
chpl -o hello ~/examples/hello.chpl
Run it
./hello

Running “./hello” should output:

Hello, world!

If you are running MacOSX, Windows, or for some other the reason the above commands does not work for you then consult the official quick start instructions [http://chapel.cray.com/docs/master/usingchapel/QUICKSTART.html].

Compiling

What is that!? A binary! Ohh my…

Chapel is currently a compiled language. However, it lets you write and compile very simple programs. There is no annoying boiler-plate needed to get going.

	Python

	
	Chapel

	print "Hello, World!"

	
	writeln("Hello, World!");

And if you like to structure your code, Chapel has neat means for doing so.

	Python

	
	Chapel

	def main():
 print "Hello, World!"

if __name__ == "__main__":
 main()

	
	module Hello {
 proc main() {
 	writeln("Hello, World!");
 }
}

All examples in this tutorial / reference guide are compilable. Which means that you can take any snippet and put it into a file like exploring.chpl and compile it:

chpl -o exploring exploring.chpl

Which will create a binary named exploring to execute whatever you have written in exploring.chpl.

Language Basics

This section provides an informal language reference. It takes you through the base language features of Python and provides an example of how an equivalent program would be expressed in Chapel.

Variables and Types

In Python, variables are implicitly declared and their type determined when they are assigned to. In Chapel, variable declaration is explicit, but the type of the variable can be inferred from its use in a manner equivalent to that of Python.

	Python

	
	Chapel

	answer = 42
distance = 123.45
computer = "Earth"

	
	var answer = 42;
var distance = 123.45;
var computer = "Earth";

Types in Python are dynamic, meaning that a variable can change type during its lifetime. The type of a variable in Chapel is static and inferred at compile-time, which means that a type is assigned and cannot be changed at runtime.

Comments

	Python

	
	Chapel

	# Single-line comment

"""
 Multi-line comments
"""

	
	// Single-line comment

/*
 Multi-line comment
*/

Literals

These work in much the same way that you are used to. A brief overview is provided below.

	Python

	
	Chapel

	bl = True # Booleans
bl = False

ud = 42 # Unsigned digits
sd = -42 # Signed digits

hd = 0x2A # Hex-Digits
hd = 0X2A

bd = 0b101010 # Binary-Digits
bd = 0B101010

r = 42.0 # Reals

s = '42' # Strings

s = "42"

Complex / imaginary
z = 1 + 2.0j

Complex accessors
z.real # For the real part
z.imag # For for imaginary part

	
	var bl = true; // Booleans
 bl = false;

var ud = 42; // Unsigned digits
var sd = -42; // Signed digits

var hd = 0x2A; // Hex-Digits
 hd = 0X2A;

var bd = 0b101010; // Binary-Digits
 bd = 0B101010;

var r = 42.0; // Reals

var s = '42'; // Strings
 s = "42";

// Complex / imaginary
var z = 1 + 2.0i; // Common
 z = (1.0, 2.0):complex; // Alternative syntax

// Complex accessors
z.re; // For the real part
z.im; // For the imaginary part

Console input / output

You can write to the console (standard output) using write and writeln:

	Python

	
	Chapel

	print "Hello, you." # With a newline
print "Hello, you.", # Without a newline

	
	writeln("Hello, you."); // With a newline
write("Hello, you."); // Without a newline

You can read input from the console (standard input) using read and readln:

	Python

	
	Chapel

	first_answer = raw_input(
 "The Answer to the ultimate question is?\n"
)
print "That is", int(first_answer) == 42

second_answer = raw_input(
 "What is the largest biological computer?\n"
)
print "That is", str(second_answer) == "Earth"

	
	writeln("The Answer to the Ultimate Question is?");
var first_answer = read(int);

writeln("That is ", first_answer == 42);

writeln("What is the largest biological computer?");
var second_answer = read(string);

writeln("That is ", second_answer == "Earth");

Note

Notice that the interface for reading input is quite different, though equally simple. In Python you need to explicitly cast the input, whereas in Chapel the type of the input is provided to the read/readln functions directly.

Conditionals and Blocks

Python is famous for using an indentation guided block-structure, thereby arguably improving readability and increasing consistency of code-style. Chapel uses curly-brackets to denote the start and end of a block.

	Python

	
	Chapel

	#
light = raw_input("Which color is the traffic light?\n")

if light == "green":
 print "You can cross the street now."

if light == "green":
 print "You can cross the street now."
else:
 print "Wait for the green light."

if light == "green":
 print "You can cross the street now."
elif light == "yellow":
 print "CAUTION!"

if light == "green":
 print "You can cross the street now."
elif light == "yellow":
 print "CAUTION!"
else:
 print "Do not cross!"

	
	writeln("Which color is the traffic light?");
var light = read(string);

if light == "green" {
 writeln("You can cross the street now.");
}

if light == "green" {
 writeln("You can cross the street now.");
} else {
 writeln("Wait for the green light.");
}

if light == "green" {
 writeln("You can cross the street now.");
} else if light == "yellow" {
 writeln("CAUTION!");
}

if light == "green" {
 writeln("You can cross the street now.");
} else if light == "yellow" {
 writeln("CAUTION!");
} else {
 writeln("Do not cross!");
}

Switch / Case

Python does not support switch-statements and instead relies on chaining if-elif-else statements.

Chapel, on the other hand, does have switch-statements, specifically select-when-otherwise statements:

	Python

	
	Chapel

	#
light = raw_input("Which color is the traffic light?\n")

if light=="green":
 print "You can cross the street now."
elif light=="yellow":
 print "CAUTION!"
elif light=="red":
 print "Do not cross!"
else:
 print "WARNING! Traffic-light is broken!"

	
	writeln("Which color is the traffic light?");
var light = read(string);

select(light) {
 when "green" {
 writeln("You can cross the street now.");
 }
 when "yellow" {
 writeln("CAUTION!");
 }
 when "red" {
 writeln("Do not cross!");
 }
 otherwise {
 writeln("WARNING! Traffic-light is broken!");
 }
}

Note

Notice that in both Python and Chapel these forms of switch-statements do not fall through, meaning that one and only one case will be executed. Coming from Python, this might not surpise you; however, if you have ever written a switch-statement in other languages then this may be slightly surprising.

Ranges

In Python range is a list-constructor often used for driving for-loops or list comprehensions. For lowered memory consumption, Python provides the generator equivalent of range namely xrange.

In Chapel a range is a language construct which behaves and is used in much the same way as lists are used in Python. Where you would think about lists and slicing operations in Python, think of ranges in Chapel.

	Python

	
	Chapel

	r1 = xrange(1, 10) # yields 1, 2, 3, 4, 5, 6, 7, 8, 9
r2 = xrange(10, 1) # yields nothing

	
	var ns = 1..9; // yields 1, 2, 3, 4, 5, 6, 7, 8, 9
 ns = 9..1; // yields nothing

Note

Difference in bounds!

	In Python, range return values in the interval [start, stop[.

	In Chapel a range-expression yields values the interval [start, stop].

For both languages the above is a shorthand of the wider form: start, stop, step.

	Python

	
	Chapel

	# Values in ascending order
r1 = xrange(1, 10, 1) # yields 1, 2, 3, 4, 5, 6, 7, 8, 9
r2 = xrange(1, 10, 2) # yields 1, 3, 5, 7, 9

Values in descending order
r3 = xrange(9, 0, -1) # yields 9, 8, 7, 6, 5, 4, 3, 2, 1
r4 = xrange(9, 0, -2) # yields 9, 7, 5, 3, 1

	
	// Values in ascending order
var ns = 1..9 by 1; // yields 1, 2, 3, 4, 5, 6, 7, 8, 9
 ns = 1..9 by 2; // yields 1, 3, 5, 7, 9

// Values in descending order
 ns = 1..9 by -1; // yields 9, 8, 7, 6, 5, 4, 3, 2, 1
 ns = 1..9 by -2; // yields 9, 7, 5, 3, 1

…

	Python

	
	Chapel

	# No equivalent in Python

	
	// Infinite ranges
var one_to_inf = 1..; // yields from one to infinity: 1, 2, 3, 4, 5, ...
var inf_to_one = ..1; // yields from infinity to one: ..., -5, -4, -3 , -2, -1, 0, 1
var inf_to_inf = .. ; // yields from infinity to infinity: ... , ...

…

	Python

	
	Chapel

	# yields 10 values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
ns = xrange(10)

	
	// yields 10 values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
var ns = 0.. # 10;

Loops

	Python

	
	Chapel

	# Using generators
for i in xrange(1, 10):
 print i

	
	// Using ranges
for i in 1..10 {
 writeln(i);
}

	Python

	
	Chapel

	for i, v in enumerate(['running', 'with', 'scissors']):
 print i, v

	
	for (i, v) in zip(1.. , ["running", "with", "scissors"]) {
 writeln(i, ' ', v);
}

	Python

	
	Chapel

	i = 0
while i<10: # while loop
 i += 1
 print i

i = 0 # do-while look-a-like loop
cond = True
while cond:
 i += 1
 print i
 cond = i<10

	
	var i = 0; // while loop
while i<10 {
 i += 1;
 writeln(i);
}

i = 0; // do-while loop
do {
 i += 1;
 writeln(i);
} while(i<10);

Functions and Types

	Python

	
	Chapel

	def abs(x):
 if x < 0:
 return -x
 else:
 return x

	
	proc abs(x) {
 if (x < 0) then
 return -x;
 else
 return x;
}

Variable arguments?
Argument unpacking?
Return values?
Return type declaration?

Lists, Arrays, Tuples, and Dicts

In Python, lists are an essential built-in datastructure. You might be frightened to learn that lists are not particularly useful in Chapel. However, fear not. Many of the uses of lists in Python are handled by ranges, such as driving loops. So if that is your primary concern, then take another look at the description of ranges above.

If you need the ability to have elements of different types in a container such as:

stuff = ['a string', 42, ['another', 'list', 'with', 'strings']]

Then take a look at tuples in the following section.

If you use lists for processing various forms of data of the same type, then what you need are Chapel arrays. Yes, that is correct, Chapel actually has arrays as first-class citizens in the language. Chapel is, to a great extent, all about arrays.

Tuples

Tuples work in ways quite familiar to a Python programmer. Tuples are among other things useful for packing and unpacking return-values from functions and having sequences of varying types.

	Python

	
	Chapel

	coord = ('47.606165', '-122.332233'); # Assignment
print "coord =", coord
 ## Tuple item access
 # - Indexing
print "Latitude =", coord[0], \
 ", Longitude =", coord[1]

(latitude, longitude) = coord; # - Unpacking

print "Latitude =", latitude, \
 ", Longitude =", longitude

	
	var coord = (47.606165, -122.332233); // Assignment
writeln("coord = ", coord);
 /// Tuple item access
 // - Indexing
writeln(
 "Latitude = ", coord(1),
 ", Longitude = ", coord(2)
);

var (latitude, longitude) = coord; // - Unpacking

writeln(
 "Latitude = ", latitude,
 ", Longitude = ", longitude
);

Note

Indexing scheme of tuples.

	In Python, tuple-indexing is 0-based.

	In Chapel, tuple-indexing is 1-based.

Note

Mutability of tuples.

	In Python, tuples are immutable.

	In Chapel, tuples are mutable.

Arrays

This section only scratches the surface of Arrays in Chapel. The use of arrays and concepts related to them are described in greater detail in the section on data parallelism.

Since Python does not support arrays within the language, a comparison to the widespread and popular array-library NumPy is used as a reference instead. The first example below illustrates the creation and iteration over a 10x10 array containing 64-bit floating point numbers.

	Python

	
	Chapel

	import numpy as np

A = np.zeros((10, 10), dtype=np.float64)

for a in np.nditer(A): # Element iteration
 print a

for i in xrange(0, 10): # Index iteration
 for j in xrange(0, 10):
 print "(%d,%d) = %f" % (i, j, A[i,j])

	
	// No need to import, arrays are built-in

var A: [0..9, 0..9] real;

for a in A { // Element iteration
 writeln(a);
}
 // Index iteration
for (i, j) in A.domain {
 writeln("(",i,",",j,") = ",A[i,j]);
}

Note

Domains an unfamiliar concept!

The array syntax and semantics should be easy to follow. The interesting thing to notice is the use of .domain when doing indexed iteration. A domain is a powerful concept and you will be very pleased with it once you get to know it. However, it does require an introduction.

A domain defines a set of indexes. When iterating over the domain associated with an array, as in the example above, you effectively iterate over all the indexes of all elements in the array. You might be accustomed to 0-based indexing from Python when using lists and tuples. With Chapel you can define whether you want your arrays to be 0-based or 1-based.
In the example above, the array is 0-based since the indexes are defined by the range 0..9. If you would prefer 1-based arrays you would define it using the range 1..10 instead.

This is quite a powerful feature. When using arrays as abstractions for matrices, you might find it useful to use 1-based indexing and in other situations a different indexing scheme. With Chapel you can define the index-set and scheme that is most convenient for the domain you are working within.

Initialization

	Python

	
	Chapel

	import numpy as np

A = np.arange(1, 11, dtype=np.float64)

print A

	
	// No need to import, arrays are built-in

var A: [1..10] real = 1..10;

writeln(A);

Whole-array operations.

	Python

	
	Chapel

	import numpy as np

B = np.random.random((10,10))
C = np.random.random((10,10))

A = B + 2.0 * C

for a in np.nditer(A):
 print a

	
	use Random;

config const mySeed = SeedGenerator.currentTime; // Allow caller to set seed

var A, B, C: [1..10, 1..10] real;
fillRandom(B, mySeed); // Fill with random values
fillRandom(C, mySeed);

A = B + 2.0 * C; // Whole-array operations

for a in A { // Print the result
 writeln(a);
}

Reductions and scans

	Python

	
	Chapel

	import numpy as np

A = np.arange(1, 11, dtype=np.float64)

print np.sum(A) # Reduction

print np.cumsum(A) # Scan

	
	// No need to import, arrays are built-in

var A: [1..10] real = 1..10;

writeln(+reduce(A)); // Reduction

writeln(+scan(A)); // Scan

Function promotion

	Python

	
	Chapel

	import numpy as np

def unary(element):
 return element*3

def binary(e1, e2):
 return (e1+e2)*3

A = np.arange(1, 11, dtype=np.float64)
B = np.arange(1, 11, dtype=np.float64)

print np.sqrt(A) # Rely on NumPy ufuncs
print map(unary, A) # Or mapping functions
print map(binary, A, B) # Or mapping functions

	
	// No need to import, arrays are built-in

proc unary(element) { // User-defined functions
 return element*3;
}

proc binary(e1, e2) {
 return (e1+e2)*3;
}

var A, B: [1..10] real = 1..10;

writeln(sqrt(A)); // Promotion of built-in
writeln(unary(A)); // Promotion of userdef unary
writeln(binary(A, B)); // Promotion of userdef binary

Dictionaries (Associative Arrays)

Dict-comprehension?

Classes and Objects

In Python, everything is an object and all objects have a textual representation defined by the object.str(), etc. is there equivalent functionality in Chapel?

	Python

	
	Chapel

	class Stoplight:

 def __init__(self, color):
 self.color = color

sl = Stoplight("Green")

print sl.color

	
	class Stoplight {
 var color: string;

 proc Stoplight(color: string) {
 this.color = color;
 }
}

var sl = new Stoplight("Green");

writeln(sl.color);

Organizing Code

Python names modules implicitly via the filename convention. Chapel allows you to use the filename, but also allows you to define it explicitly through the “module” directive. You can also define and use submodules, or modules defined within the scope of another module.

	Python

	
	Chapel

	def main():
 pass

if __name__ == "__main__":
 main()

	
	module Hello {
 proc main() {

 }
}

	Python

	
	Chapel

	from random import *

Other means of importing
import random
assert random.Random
from random import Random

	
	use Random;

// There are no equivalent means of
// of importing where the namespaces
// are maintained.

Parallelism

Parallelism in Chapel is provided by the language itself in contrast to Python, which relies on modules and libraries. This section contains fewer side-by-side examples, as most of these features are harder to come by in Python. Instead, reference to libraries will be provided.

Task Parallelism

In Chapel, orchestration of parallel execution is provided by the built-in keywords: begin, sync, cobegin, and atomic variables (atomic). Task parallelism in Python is provided through libraries such as: multiprocessing, threading, thread, Queue, queue, Mutex, and mutex.

If you are used to the multiprocessing and threading libraries, then think
of a Chapel task as either a multiprocessing.Process or a threading.Thread.

begin and sync

The examples below implement equivalent programs in Python and Chapel: a
function is executed in parallel, arguments are passed to the function and the
main program waits for the function to finish.

	Python

	
	Chapel

	from multiprocessing import Process

def f(name):
 print('Hello, '+ name)

if __name__ == '__main__':
 p = Process(target=f, args=('bob',))
 p.start()
 p.join()

	
	proc f(name) {
 writeln("Hello, ", name);
}

proc main() {
 sync begin f("bob");
}

In Chapel, the spawning of a task is done by using the begin statement, while
Python requires the instantiation of a Process targeting a function and invoking
the start method.
Waiting for the parallel execution to finish is done by applying the sync
statement in Chapel and invoking the join method in Python.

Spawning a task in Chapel does not require specifying a target function, blocks
of code can be used:

	Chapel

	var name = "Bob";
writeln("Let us make ", name, " feel welcome.");
begin {
 writeln("Hi ", name);
 writeln("Pleased to meet you.");
}
writeln("Done welcoming ", name);

Which also illustrates how you can share data between tasks. Data within scope
is available to the task and it is therefore not nescesarry to pass it argument
via a function-call.

If you try to execute the example above you might notice that the spawning
task prints out “Done welcoming …” prematurely (prior to the spawned task
printing “Welcome, …”.

This is just to emphasize the use of the sync statement which blocks until the
parallel execution finishes. So to ensure the correct ordering, apply the sync
statement as done below:

	Chapel

	var name = "Bob";
writeln("Let us make ", name, " feel welcome.");
sync begin {
 writeln("Hi ", name);
 writeln("Pleased to meet you.");
}
writeln("Done welcoming ", name);

cobegin

begin spawns off given statement as a single task, the cobegin statement
spawns off multiple tasks; one for each statement in the given block of
statements.

	Chapel

	var name = "Bob";
writeln("Let us all say hi. ");
cobegin {
 writeln("Hi ", name, "i am Alice");
 writeln("Hi ", name, "i am John.");
 writeln("Hi ", name, "i am Jane.");
 writeln("Hi ", name, "i am Richard.");
 writeln("Hi ", name, "i am Norma.");
}
writeln("Done welcoming ", name);

In addition to spawning a task for each statement within the block, the
cobegin also implicitly syncs. That is, it waits for all the statements
within the block to finish executing. The above could also be expressed in terms
of begin and sync by:

	Chapel

	var name = "Bob";
writeln("Let us all say hi. ");
sync {
 begin writeln("Hi ", name, "i am Alice");
 begin writeln("Hi ", name, "i am John.");
 begin writeln("Hi ", name, "i am Jane.");
 begin writeln("Hi ", name, "i am Richard.");
 begin writeln("Hi ", name, "i am Norma.");
}
writeln("Done welcoming ", name);

Synchronization Variables

sync, single, and atomic

Data Parallelism

forall, domains, arrays, reduce, scan
…

Locality

locale, on

Domain Maps

NumPy

Batteries

Python is well-known for having “batteries-included”. The cPython interpreter comes packaged with a rich standard library for functionality. This section gives a brief overview of how a subset of the Python standard library maps to Chapel language features and libraries.

What is the equivalent of “https://docs.python.org/2/library/” ?

argparse

Config variables. Param and config.

multiprocessing

…

threading

See multiprocessing.

time

Keywords

You might stumble over keywords in Chapel that you did not see coming. The following code might look harmless for a Python programmer:

var begin = 1;
var end = 10;
for n in begin..end {
 write(n);
}
writeln(".");

However, in Chapel begin is a keyword for one of the task-parallelism features of the language. The above will therefore produce an error along the lines of syntax error: near 'begin'. Chapel uses the following keywords:

_ align atomic begin break
by class cobegin coforall config
const continue delete dmapped do
domain else enum export extern
for forall if in index
inline inout iter label let
local module new nil on
otherwise out param proc record
reduce ref return scan select
serial single sparse subdomain sync
then type union use var
when where while yield zip

Pythonic Module

For those transitioning from Python, curious about Chapel, the Pythonic module might be nice to take a look at. It contains a set of helper functions mimicing the functionality of some of the functions built into Python such as enumerate, xrange, range, among others.

If it is useful it should probably be made available in a more convenient form, than this.

module Pythonic {

iter enumerate(iterable) {
 for zipped in zip(1.. , iterable) {
 yield zipped;
 }
}

iter xrange(nelements: int) {
 for i in 0..nelements-1 by 1 {
 yield i;
 }
}

iter xrange(start: int, stop: int) {
 for i in start..stop-1 by 1 {
 yield i;
 }
}

iter xrange(start: int, stop: int, step: int) {
 for i in start..stop-1 by step {
 yield i;
 }
}

//
// Python equivalents
//

// These should return 1D arrays?
proc range(nelements) {

}

proc range(start, stop) {

}

proc range(start, stop, step) {

}

//
// NumPy Equivalents
//
iter arange(start, stop, step) {
 yield 1;
}

//
// Hmmm how about parallel iterators? Should the above instead be forall?
// How about parallel zipped iterators?

}

Python and Chapel

SciPy and its accompanying software stack[2] provides a powerful environment for scientific computing in Python. The fundamental building block of SciPy is the multidimensional arrays provided by NumPy[1]. NumPy expands Python by providing a means of doing array-oriented programming using array-notation with slicing and whole-array operations.

The high-level abstractions, however, fails the user in the quest for high performance. In which case the user must take control and choose between porting to another language or integrate with low-level APIs.

The following project ideas seek to cover some ground when choosing to port a Python/NumPy application to Chapel, or use Chapel as a backend for Python/NumPy both implicitly and explicitly.

Chapel for Python/NumPy Users

The output of this project is an introduction to the Chapel language and concepts from the perspective of a NumPy user. The introduction is written to answer the question “I am used to doing X in NumPy, how would I express X in Chapel?”.

npbackend / Hidden Chapel

The strong suits of Python/NumPy are high-level abstractions, convenient array-notation and a rich environment/software stack. It would be interesting to explore how to treat NumPy as a DSL and map array operations transparently to Chapel.

Thereby maintaining abstractions, environment, existing Python/NumPy sourcecode but somehow transparently delegating parallelization to Chapel. Using and possibly expanding upon the experiences gained from the previously described project and applying sensible default strategies for mapping to domains and locales. Strategies which would to a great extent rely on implicit data-parallelism of array operations.

The work can build upon experiences from our integration of Bohrium and NumPy and would involve factoring out the glue between NumPy and Bohrium into a self-contained component which could be retargeted to Chapel.

pyChapel

The pyChapel implementation is now deprecated in favor of an approach utilizing
Cython. This is a work in progress effort, but should hopefully come online
shortly.

Miscellaneous Notes

This documentation is hosted on readthedocs.org.

Development

For development, install the Python packages listed in the requirements.txt file.

From the root of the git repo:
pip install -r requirements.txt

Introspection

writeln(typeToString(something.type))

CompilerWarning

If Chapel had a band

One of their songs might be a cover of “Hot Chocolate - Every 1’s a Winner”:

"Every 1's An Iterator"

Never could believe the things you do to me
Never could believe the way you are
Every day I bless the day that you got through to me
'Cause baby, I believe that you're a star

Everyone's an iterator, that's the truth (yes, the truth)
Making loops with you is such a thrill
Everyone's an iterator, that's no lie (yes, no lie)
You never fail to satisfy (satisfy)
Let's do it again

[Instrumental]

Never could explain just what was happening to me
Just one yield from you and I'm a flame
Baby, it's amazing just how wonderful it is
That the things we like to do are just the same

Everyone's an iterator, that's the truth (yes, the truth)
Making loops with you is such a thrill
Everyone's an iterator, that's no lie (yes, no lie)
You never fail to satisfy (satisfy)

[Instrumental]

Let's do it again

Everyone's an iterator, that's the truth (yes, the truth)
Making loops with you is such a thrill
Everyone's an iterator, that's no lie (yes, no lie)
You never fail to satisfy (satisfy)

Oh, baby
Oh, baby
Oh, baby...

TODO: Example of implementing the above as an iterator…

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Chapel for Python Programmers

 		
 Getting Started

 		
 Compiling

 		
 Language Basics

 		
 Variables and Types

 		
 Comments

 		
 Literals

 		
 Console input / output

 		
 Conditionals and Blocks

 		
 Switch / Case

 		
 Ranges

 		
 Loops

 		
 Functions and Types

 		
 Lists, Arrays, Tuples, and Dicts

 		
 Tuples

 		
 Arrays

 		
 Dictionaries (Associative Arrays)

 		
 Classes and Objects

 		
 Organizing Code

 		
 Parallelism

 		
 Task Parallelism

 		
 begin and sync

 		
 cobegin

 		
 Synchronization Variables

 		
 Data Parallelism

 		
 Locality

 		
 Domain Maps

 		
 NumPy

 		
 Batteries

 		
 argparse

 		
 multiprocessing

 		
 threading

 		
 time

 		
 Keywords

 		
 Pythonic Module

 		
 Python and Chapel

 		
 Chapel for Python/NumPy Users

 		
 npbackend / Hidden Chapel

 		
 pyChapel

 		
 Miscellaneous Notes

 		
 Development

 		
 Introspection

 		
 If Chapel had a band

_static/up-pressed.png

_static/plus.png

_static/up.png

